中教数据库 > 浙江大学学报(工学版) > 文章详情

后验概率图与补白模型二次融合的关键词识别

更新时间:2023-05-28

【摘要】使用全连接神经网络结合Softmax分类器对汉语的408个音节建立音节分类器,利用等长处理后的特征向量训练Softmax分类器,将Softmax分类器输出概率作为后验概率图,与隐马尔科夫补白模型(HMM/Filler)进行第一次融合,得到子后验概率图隐马尔科夫模型(Posteriorgram-HMM).针对关键词训练样本较少的问题,将标注样本进行强制切分,得到HMM每个状态上的训练数据.将隐马尔科夫最大后验概率基线模型(HMM-MAP)与Posteriorgram-HMM进行第二次融合,提出最大后验概率图隐马尔科夫模型(Posteriorgram-HMM-MAP).在数据集上训练模型后,使用测试数据对其进行测试.结果表明:Posteriorgram-HMM-MAP的综合识别率相比PosteriorgramHMM提升了3.55%,相比HMM/Filler提升了10.29%.

【关键词】

114 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号